22,176 research outputs found

    Instant restore after a media failure

    Full text link
    Media failures usually leave database systems unavailable for several hours until recovery is complete, especially in applications with large devices and high transaction volume. Previous work introduced a technique called single-pass restore, which increases restore bandwidth and thus substantially decreases time to repair. Instant restore goes further as it permits read/write access to any data on a device undergoing restore--even data not yet restored--by restoring individual data segments on demand. Thus, the restore process is guided primarily by the needs of applications, and the observed mean time to repair is effectively reduced from several hours to a few seconds. This paper presents an implementation and evaluation of instant restore. The technique is incrementally implemented on a system starting with the traditional ARIES design for logging and recovery. Experiments show that the transaction latency perceived after a media failure can be cut down to less than a second and that the overhead imposed by the technique on normal processing is minimal. The net effect is that a few "nines" of availability are added to the system using simple and low-overhead software techniques

    The entangling side of the Unruh-Hawking effect

    Full text link
    We show that the Unruh effect can create net quantum entanglement between inertial and accelerated observers depending on the choice of the inertial state. This striking result banishes the extended belief that the Unruh effect can only destroy entanglement and furthermore provides a new and unexpected source for finding experimental evidence of the Unruh and Hawking effects.Comment: 4 pages, 4 figures. Added Journal referenc

    Relationships and events: towards a general theory of reification and truthmaking.

    Get PDF
    We propose a novel ontological analysis of relations and relationships based on a re-visitation of a classic problem in the practice of knowledge repre- sentation and conceptual modeling, namely relationship reification. Our idea is that a relation holds in virtue of a relationship's existence. Relationships are therefore truthmakers of relations. In this paper we present a general theory or reification and truthmaking, and discuss the interplay between events and rela- tionships, suggesting that relationships are the focus of events, which emerge from the context (the scene) they occur in

    Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer

    Get PDF
    Background: ATR-Chk1 signalling network is critical for genomic stability. ATR-Chk1 may be deregulated in breast cancer and have prognostic, predictive and therapeutic significance. Patients and methods: We investigated ATR and phosphorylated CHK1Ser345 protein (pChk1) expression in 1712 breast cancers (Nottingham Tenovus series). ATR and Chk1 mRNA were evaluated in 1950 breast cancers (METABRIC cohort). Pre-clinically, biological consequences of ATR gene knockdown or ATR inhibition by small molecule inhibitor (VE-821) were investigated in MCF-7 and MDA-MB-231 breast cancer cell lines and in non-tumorigenic breast epithelial cells (MCF10A). Results: High ATR and high cytoplasmic pChk1 expression was significantly associated with higher tumour stage, higher mitotic index, pleomorphism and lymphovascular invasion. In univariate analysis, high ATR and high cytoplasmic pChk1 protein expression was associated with shorter breast cancer specific survival (BCSS). In multivariate analysis, high ATR remains an independent predictor of adverse outcome. At the mRNA level, high Chk1 remains associated with aggressive phenotypes including lymph node positivity, high grade, Her-2 overexpression, triple-negative phenotype and molecular classes associated with aggressive behaviour and shorter survival.. Pre-clinically, Chk1 phosphorylation at serine 345 following replication stress (induced by gemcitabine or hydroxyurea treatment) was impaired in ATR knockdown and in VE-821 treated breast cancer cells. Doxycycline inducible knockdown of ATR suppressed growth, which was restored when ATR was re-expressed. Similarly, VE-821 treatment resulted in a dose dependent suppression of cancer cell growth and survival (MCF7 and MDA-MB-231) but had no effect on non-tumorigenic breast epithelial cells (MCF10A). Conclusions: We provides evidence that ATR and Chk1 are promising biomarkers and rational drug target for personalized therapy in breast cancer

    Constraining parameter space in type-II two-Higgs doublet model in light of a 126 GeV Higgs boson

    Full text link
    We explore the implications of a 126 GeV Higgs boson indicated by the recent LHC results for two-Higgs doublet model (2HDM). Identifying the 126 GeV Higgs boson as either the lighter or heavier of CP even neutral Higgs bosons in 2HDM, we examine how the masses of Higgs fields and mixing parameters can be constrained by the theoretical conditions and experimental constraints. The theoretical conditions taken into account are the vacuum stability, perturbativity and unitarity required to be satisfied up to a cut-off scale. We also show how bounds on the masses of Higgs bosons and mixing parameters depend on the cut-off scale. In addition, we investigate whether the allowed regions of parameter space can accommodate particularly the enhanced di-photon signals, ZZ* and WW* decay modes of the Higgs boson, and examine the prediction of the signal strength of Z{\gamma} decay mode for the allowed regions of the parameter space.Comment: To be published in JHEP, 20 pages, 11 figures, Figures and results are updated for the recent LHC result

    Initial validation of Chinese Pain Assessment in Advanced Dementia Scale (C-PAINAD)

    Get PDF
    2007-2008 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Production of α1,3-galactosyltransferase-deficient pigs

    Get PDF
    The enzyme α1,3-galactosyltransferase (α1,3GT or GGTA1) synthesizes α1,3galactose (α1,3Gal) epitopes (Galα1,3Galβ1,4GlcNAc-R), which are the major xenoantigens causing hyperacute rejection in pig-to-human xenotransplantation. Complete removal of α1,3Gal from pig organs is the critical step toward the success of xenotransplantation. We reported earlier the targeted disruption of one allele of the α1,3GT gene in cloned pigs. A selection procedure based on a bacteria[toxin was used to select for cells in which the second allele of the gene was knocked out. Sequencing analysis demonstrated that knockout of the second allele of the α1,3GT gene was caused by a T-to-G single point mutation at the second base of exon 9, which resulted in inactivation of the α1,3GT protein. Four healthy α1,3GT double-knockout female piglets were produced by three consecutive rounds of cloning. The piglets carrying a point mutation in the α1,3GT gene hold significant value, as they would allow production of α1,3Gal-deficient pigs free of antibiotic-resistance genes and thus have the potential to make a safer product for human use

    Sliding charge density wave in manganites

    Full text link
    The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}Ca_{0.50}MnO_3 that this state is in fact a prototypical charge density wave (CDW) which undergoes collective transport. Dramatic resistance hysteresis effects and broadband noise properties are observed, both of which are typical of sliding CDW systems. Moreover, the high levels of disorder typical of manganites result in behaviour similar to that of well-known disordered CDW materials. Our discovery that the manganite superstructure is a CDW shows that unusual transport and structural properties do not require exotic physics, but can emerge when a well-understood phase (the CDW) coexists with disorder.Comment: 13 pages; 4 figure

    Monoclonal Invariant NKT (iNKT) Cell Mice Reveal a Role for Both Tissue of Origin and the TCR in Development of iNKT Functional Subsets

    Get PDF
    Invariant NKT (iNKT) cell functional subsets are defined by key transcription factors and output of cytokines, such as IL-4, IFN-γ, IL-17, and IL-10. To examine how TCR specificity determines iNKT function, we used somatic cell nuclear transfer to generate three lines of mice cloned from iNKT nuclei. Each line uses the invariant Vα14Jα18 TCRα paired with unique Vβ7 or Vβ8.2 subunits. We examined tissue homing, expression of PLZF, T-bet, and RORγt, and cytokine profiles and found that, although monoclonal iNKT cells differentiated into all functional subsets, the NKT17 lineage was reduced or expanded depending on the TCR expressed. We examined iNKT thymic development in limited-dilution bone marrow chimeras and show that higher TCR avidity correlates with higher PLZF and reduced T-bet expression. iNKT functional subsets showed distinct tissue distribution patterns. Although each individual monoclonal TCR showed an inherent subset distribution preference that was evident across all tissues examined, the iNKT cytokine profile differed more by tissue of origin than by TCR specificity
    corecore